International Journal of Metalcasting
10/2016
10.1007/s40962-016-0092-9
Fundición de hierro, I+D+i, Ramón Suarez, Rodolfo González-Martínez, Susana Méndez, Tecnologías de fundición, Urko de la Torre
In previous studies, the process parameters to obtain ausferritic ductile iron in as-cast conditions by means of engineered cooling were defined, that is, without an austempering heat treatment. This material was fundamentally characterized, and its mechanical properties were determined. It was demonstrated that obtaining fully ausferritic microstructures by means of engineered cooling was feasible and that the properties met the requirements of the conventionally produced austempered ductile iron. Additionally, an experimental model was developed to define the optimal processing parameters of castings presenting different thermal moduli, in terms of chemical composition, temperatures and time parameters. The aim of the present work is to go into detail about the physical properties of the ausferritic as-cast materials. The chemical composition of the samples was defined by means of the experimental model. The isothermal transformation temperature was changed from 300 to 400 °C, while the other process parameters (shakeout temperature and isothermal transformation time) remained constant. Due to the excellent strength/toughness ratio of these materials, they are prone to being used on different applications such as automotive suspension components, rail components in low temperature environments and pumps and engines exposed to corrosive marine conditions among others. With the aim of responding to this demand, an advanced characterization of the material’s low temperature, corrosion or dynamic properties was performed on this work. These results were compared to the conventionally heat-treated austempered ductile iron as well as other nodular iron ferritic–pearlitic grades found in the literature.
Susana Méndez, Urko de la Torre, Rodolfo González-Martínez, Ramón Suárez.
As-cast ausferrite, fatigue, corrosion, mechanical properties, impact resistance, three-point bending test.
¿Cómo podemos ayudarte?
Mantente informad@ de la actividad de AZTERLAN
Mantente informad@ de la actividad de AZTERLAN
Formamos equipos de trabajo en distintos ámbitos de la metalurgia y los procesos de transformación de metales.
Indícanos los datos de tu trabajo y nos pondremos en contacto contigo lo antes posible.
Comparte tu reto con nuestro equipo. Hablar no puede más que acercarnos un poco más a posibles soluciones.